还记得跑道入口内移可以用于起飞的故事吗?

没想到这都能有坑。

大概几个月之前,从飞行那里得知,东北某机场的跑道入口内移,其实内移成了滑行道,所以不能用于起飞。这么骚的操作是第一次遇到。记录一下。

虽然这个图上是入口内移的标志->箭头。但实际是滑行道的黄黑线。借用某机长的图:

自动化签派放行和处理NOTAM的坑

今天遇到一件有意思的事情,有个航班从奥克兰NZAA起飞,需要选择ETOPS备降场,可选的只有奥克兰NZAA和基督城NZCH。但是由于公司的宵禁数据库显示,奥克兰宵禁,基督城的长跑道02/20关闭。我们正在纠结如何调整和控制起飞时间,避开宵禁和跑道关闭时,我们注意到基督城的NOTAM原始内容是:

(B0960/21 NOTAMN
Q)NZZC/QMRLC/IV/NBO/A/000/999/4329S17232E005
A)NZCH B)2102180600 C)2102191900
D)DAILY 0600-1900
E) GRASS RWY 02/20 CLSD DUE IRRIGATION)

也许是系统自动判断错误,或者是人工判断失误,这条通告实际指的是基督城的02/20号草跑道,而不是长跑道。(长跑道和草跑道名字相同,真是醉了。)

在油管上找到的在02号草跑道落地的视频:https://youtu.be/NNNsiY0f4kQ

=======================有趣的分割线=======================

联想到目前正在推进的新一代放行系统,理论上可以做到“自动”放行。但是对后台数据维护是一个很大的挑战。开玩笑的说,以前签派员看错通告,那是放错一个航班,以后数据维护出错,那可能放错100个航班。

787的防冰MEL

去年的10月份,一架787在起飞30分钟后出现了EAI PRSOV L(左发防冰压力调节和关断活门)状态信息。虽然在QRH中没有什么需要操作的内容。但是在MEL的状态信息页,波音很周到地提供了对应的MEL条款。

按照以往737的惯性思维,我猜这些MEL会说是把发动机防冰活门失效在开位,并增加油耗;或者把活门失效在关位,并不得在结冰气象条件下运行。由于这个航班是一个10小时的洲际航班,我担心飞出去飞不回来。

然后是我们看到MEL条款写的是把活门失效在半开位(好新奇)。我猜是因为787的发动机功率太大,如果完全失效在开位太猛了。随后发现O项内容,也仅仅是燃油增加1.6%,似乎还可以,起飞性能也够,对回程航班没有很明显的影响。

===================================

在了解787防冰系统的时候,从一位飞行员朋友那里了解到787发动机的另一个防冰功能,冰晶防冰(ICA)。

图中9指示ICA生效

冰晶防冰是一种全自动的功能,不过我查了一下MEL和QRH,如果ICA功能故障的话,空中没有操作要求,但是地面不能放行。FCOM对ICA的描述如下:

另一篇波音的文章介绍冰晶积冰是一种高空的积冰,往往影响发动机的内部核心机。

High-altitude ice crystals in convective weather are now recognized as a cause of engine damage and engine power loss that affects multiple models of commercial airplanes and engines. These events typically have occurred in conditions that appear benign to pilots, including an absence of airframe icing and only light turbulence. The engines in all events have recovered to normal thrust response quickly. Research is being conducted to further understand these events. Normal thunderstorm avoidance procedures may help pilots avoid regions of high ice crystal content.

Quick Turnaround Weight and Time

前几天被一个飞行员朋友问到,OPT性能软件中的Quick Turnaround Weight和Time代表什么意思?我虽然知道和刹车温度有关系,但是也说不出个道理来。请教了性能工程师LWW后,发现背后的原理蛮复杂,坑也不少。

首先,最简单的来说,AFM中提供了Quick Turnaround Weight的图表(或者用软件算),可以用来得出一个重量值,如果飞机落地时的重量,超过这个值,那么就需要等待Quick Turnaround Time,并且检查轮胎的热熔塞(fuse plugs)是否融化,才能继续执行后续航班。

下面说说复杂的部分。原本我一直以为,Quick Turnaround Time的等待时间,是用来等待刹车降温的。其实并不是这样。根据《Boeing Jet Transport Performance Methods》 的介绍,这个Quick Turnaround Time等待的是热熔塞(fuse plugs) 升温融化。为什么呢?

图片来自网络

起落架上有刹车盘、轮子和温度传感器。飞机刹车时,刹车盘温度立即上升,由于刹车盘非常紧密,因此热量很难散去。随后升温的是刹车温度传感器,因为传感器离刹车其实有一段距离,温度传导需要时间。最后升温的才是轮胎的fuse plugs。三者的温度变化如下图:

纵轴是温度,横轴是时间。刹车时,刹车盘最快升温,随后是温度传感器,热熔塞最后升温。图片来自 《Boeing Jet Transport Performance Methods》

因为温度传导有时间。航班过站特别快的话,比如航班快速过站30分钟后,飞机滑出了, 热熔塞在40分钟后达到最高温度,并且融化了,这就有可能在起飞时,轮胎是没气的。

为了避免这种情况,手册里设置了Quick Turnaround Time,用来等待一段时间,让刹车温度有足够时间传导到热熔塞,并且检查热熔塞是否融化。如果这段时间后,热熔塞没有融化,那么就有理由相信,后续热熔塞也不会融化。

另外,别以为这个Quick Turnaround Weight 很难达到,我试着用OPT算了一下。B737-800在兰州18号落地,顺风10节,环境温度11摄氏度时,Quick Turnaround Weight是65311KG,已经小于了结构重量。 这种情况在顺风落地时尤为明显(因为有150%的风的系数Maximumquick turnaround weights should be determined using brake energies and tire speeds, as appropriate, calculated with the limit tailwind velocity factored by 150 percent.)。

PS:《Boeing Jet Transport Performance Methods》还提到,落地时低于Quick Turnaround Weight ,理论上说,可以立即执行后一段航班,但是飞行员要注意温度是累积的,如果频繁落地, 就算每次落地都低于Quick Turnaround Weight,最后热熔塞仍然会融化。有一种推荐的做法是,在后一段航班进近时,提早放下起落架来减低刹车温度。呵呵。

在机库里弄坏了飞机,算不算396部民航安全信息范畴?

前几天听说了一个事,某个人在机库内维修飞机时,不慎损坏了飞机。

对于这件事算不算CCAR396部民航安全信息需要报告的范畴,我有点疑惑,我觉得机库不算运行区域,飞机也没有开始运行。所以今天去翻了一下规章。

我先是从最新发布的《AC-396-08R2事件样例》看起的。在“运输航空非紧急事件样例”中有“航空器遭外来物撞击,导致航空器损伤“。所以从事件本身来说,应该扣这条没错。

不过,抛开适用范围谈法规都是耍流氓。我看了一下适用范围和定义:

事件信息,是指在民用航空器运行阶段或者机场活动区内发生航空器损伤、人员伤亡或者其他影响飞行安全的情况。

根据396部的四十二条,运行阶段和机场活动区的定义与《民用航空器事故征候》相同。

机场活动区:机场内用于航空器起飞、着陆以及与此有关的地面活动区域,包括跑道、滑行道、机坪等。

从机场活动区的定义上看,机库不属于机场活动区。

航空器运行阶段:从任何人登上航空器准备飞行起至飞行结束这类人员离开航空器为止的过程。

从运行阶段的定义上看,就比较纠结了。如果航空器在停场维修期间,机务上飞机,算不算“准备飞行”?

我认为,从安全管理的角度,为了尽可能多的收集安全信息,可以把这个类事件算做396部的安全信息。

拆除救生筏之后的限制

众所周知,拆除救生筏的飞机不能运行延伸跨水。上个月就遇到一个很奇葩的运行案例。航班从郑州飞虹桥,本身不牵涉到延伸跨水,但是由于华东区域雷雨覆盖,本该往南飞行的航班,向北绕飞。眼看要绕到山东半岛了。

机组报告说去青岛备降。我想想不对啊~如果去青岛,等晚上虹桥机场关闭,航班只能改去浦东,那么青岛浦东之间就是延伸跨水运行了。

好大的坑,然后只能要求机组不要去青岛,改去济南吧。

在济南落地后,告诉机组一个天津回上海的航班成功穿过了雷雨,让机组参考那个航班的轨迹飞回来。

纪念一下这个奇葩的航班。

为什么飞机的24位地址码出错

大约1个月前,发生一件奇怪的事情,经常有管制单位向我们反映,管制的二次雷达上看到飞机发射的地址码和FPL电报里的CODE不一致。这架飞机的地址码应该是7811D1,但是管制看到的是7891D1。虽然管制能继续指挥,但是缺少了扩展信息,无法自动匹配到航班信息。

而且这个问题,在不同时间、不同空间无规律发生。比如这架飞机飞重庆时发现地址错误,但是明天飞重庆就变成正确的,或者在上海飞时深圳是正确的,深圳回上海时又出错了。

因为这两个数据在二进制上看,只相差一位:

7811D1 = 11110000001000111010001
7891D1 = 11110001001000111010001

因此最初机务认为是某个插头松了。但是机务检查时,一切都是正常的。

最后,经过机务的不懈检查,发现是因为两部ATC应答机中,ATC1的编码错误,ATC2的编码是正确的。不同的机组每天飞行时,在两部ATC应答机中挑选一部用,所以造成这个错误的24位地址问题随机出现。

我斗胆去看了一眼机务的“SYSTEM SCHEMATIC MANUAL ”,ATC1的设置在M1987,而ATC2设置在M1988上。

通过这个例子,我才知道737飞机的24位地址是物理设置的,就像以前我修电脑,拔主板的跳线一样。但是我猜软件设置也不是做不到,以前看Discovery频道介绍空军一号的时候就说,空军一号可以伪装成任意一架飞机。无非就是发射了另一架飞机的24位地址。

另外,想起来半年前,我们在监控航班位置的时候,出现过同一架飞机,同时出现在两个地理位置的情况。我猜想一定是另一架飞机的24位地址设置错了。

PS:推荐微信公众号 九品机务《修改飞机24位地址码》解释了飞机上设置24位编码的过程。

墨尔本短跑道起飞案例

应该是非常久没写东西了。为了自己的业务不荒废,还是要定期写点。分享最近遇到的几个有意思的事情吧。

前几个月,墨尔本YMML因长跑道16/34关闭,使用09/27短跑道起飞。墨尔本常用的跑道是16/34.该条跑道条件较好,跑道长3657M,性能很好。09/27是一条短跑道,长度仅为2286M,起飞有限载。

在2286米的跑道上起飞,借助OPT的力量,所有参数都选“最优”。载量总算是能满足。那么还有什么办法能把性能榨干呢?

我突然想到备用前重心的事情。话说787除了正常的重心前限之外,OPT中还开放了一个14%的重心。我隐约记得还有第二个备用前重心的。翻阅AFM,果然发现了21%的重心。

分析了下性能,用21%大约可以提高1.2吨业载。但是如果使用21%备用前重心必须要配载部门可接受。问平衡要了以往的舱单,重心位置配在17.44%。要想配在23%(21+2)也许会改变配载流程(传说用21%的重心时,要求平衡配在21+2=23%之后)。

最后还有一个法规上的问题,在这次处置的过程中,我发现性能工程师用的桌面版计算软件里,其实前重心是可以随意输入的。

试想一下,如果为了追求榨干性能,那么我能不能让平衡给我个重心位置,比如17%,然后用软件当场算一个15%的前重心的起飞性能呢?从法律上讲,是否合规呢?是否违反上图下方的文字描述呢?

客改货算什么运行,基督城的消防等级。

由于疫情的影响,客运航班停止了。很多公司转而把客运飞机只运货。基本上分为三种情况,一是把座椅拆了在客舱装货,二是在座椅上装货,三是客舱不装货只在下货舱装货。

先不说在客舱装货可能引起的防火、灭火、固定问题。

对于这样的运行算不算纯货机运行,还有不同的声音。

我听到的一种说法认为,这个航班仍然可以按定期载客来运行,就好像飞机上一张票都没卖出去一样。

我查了一下121部的定义里,的确没说这样不可以。

121.3 (f) 在本规则中, 对于载运邮件的飞行, 视为载运货物飞行; 对于同时载运旅客和货物的飞行, 视为载运旅客飞行, 但应当同时满足本规则中有关货物运输条款的要求。

121中只说了同时载人和货时,视为载客。但是没说载客航班没客人时是否算cargo only。

有人问这对运行有影响吗,当然有,如果是纯货的话,运行种类就从定期载客变成了补充运行。在121.641和121.642中对于目的地机场的备降场要求是不一样的。

比如前几天,新西兰奥克兰的备降场基督城,因为消防等级不够,不能运行787,要提前4小时通知。我们在纠结能否不选目的地备降场的时候,就对运行种类疑惑了一下。

疑惑归疑惑,我还是认为当成纯货的补充运行比较合适。

因为121的适用范围上说,规定的是

使用最大商载超过3400千克的多发飞机实施的全货物运输飞行。

并没有说飞机上原来有多少个座位。

DME or GNSS Arrivals

前几天被一个朋友问起AYPY机场里的进场图有一张名叫DME or GNSS Arrivals的图。我以前没见过这种进场方式。这种方式比较奇怪的是进场图的最下面有个标着Landing的落地标准,看着像目视盘旋,但是又不能肯定。

在纳闷之余,翻遍了机场所在国的AIP也没找到图例。

经过海搜,才发现这是一种土澳特有的进场方式。在澳洲民航局的网站上,有一个叫“Civil Aviation Advisory Publications”的栏目简称CAAP。里面有个178-1号文件,解释了这种进场方式。

Is a DME or GNSS Arrival an NPA?

Yes. A DME or GNSS Arrival is a procedure unique to Australia that provides an NPA to a circling minimum. A DME or GNSS Arrival is designed using the same criteria as used in conventional NPA design.

What is different about a DME or GNSS Arrival?

DME or GNSS Arrivals are normally designed to permit descent from the en-route phase without the need to locate the aircraft overhead the navigation aid or to conduct a sector entry. Entry to the procedure is often available from any direction but commonly is limited to sectors or specific tracks…..

简单说来DME or GNSS Arrivals是向着导航台或GNSS定位点,从多个方向或扇区内飞到机场的目视盘旋区域。图上用DME弧定义了FAF和MAPt点的位置。这样从各个方向上来的飞机就能欢乐地飞往机场,而不需要画进场程序(这么做是不是比较偷懒)。另外,好像DME or GNSS Arrivals进场是没法做导航数据库的(没有航路点你让人家怎么做导航数据)。

我随手翻了几个澳洲的几个机场,都有这种进场程序。AYPY是巴布亚新几内亚的机场,但是就在澳洲边上,所以受澳洲的影响,也有这样的程序。但是澳洲的航图里落地标准写的是“CIRCLE-TO-LAND”,而不是AYPY的“LANDING”。

最后说说澳洲民航局网站上的“Civil Aviation Advisory Publications” 。这Pub有点像法规的Q&A。

Our Civil Aviation Advisory Publications (CAAPs) provide guidance and explanatory information about the meaning of certain requirements in the Civil Aviation Regulations 1988 (CAR). They may also describe methods to help you comply with a CAR requirement in a manner that would be acceptable to an authorised person or CASA.