起飞返场限重,这事好扯。

发现这个大坑是因为在opt计算过程中,737-8和787的计算界面增加了无油重zfw的输入框子。按理说计算起飞重量时无所谓zfw是多少,那么为什么需要输入无油重呢?

===========第一层坑============

这个坑从25部的25.1001说起。

25.1001条要求飞机要配备放油系统,除非证明飞机起飞重量能满足在本场落地时的爬升性能。如果具备放油能力,可以放油15分钟后的重量来计算落地的爬升性能。

所以,事情就变成了这样:对于具有放油系统的飞机,在计算起飞最大重量时,考虑放15分钟油之后的重量是否能满足爬升性能。如果不满足,就要降低重量。但是如果放不了这么多油(如放油系统设计的限制,或者没加多少油)怎么办呢?只能减少无油重啦。

原先,飞机的最大结构限重设计得不是很大,所以限重不明显(或者说故意被忽视了)。但是随着新材料的发展,最大无油重可以做得很大。比如787,想象一下,如果在一个高原机场起飞,业载很大,但是航程很短(油很少,比如兰州满客飞西安),就会造成就算放了油,仍然不能满足爬升性能。

==========第二层坑==========

那么不具备放油系统的飞机怎么办呢?比如737系列。根据我现在了解的情况,波音似乎认为NG系列的737不受此条法规的限制,在起飞性能计算过程中没有这个返场的限制。但是在737max系列的性能中有这个限重,并且在fcom的签派性能页中增加了一个叫“放油限重”的表格。说来奇怪吧,对于一个没有放油系统的飞机,却有一个放油限重。所以在max系列飞机的性能计算时,是考虑返场限重的,因为没有放油系统,所以直接限了起飞全重。

至于为啥NG不考虑25.1001条,max系列考虑了,我猜是在因为在787审定过程中,对法规有了新的理解。

===========第三层坑==========

既然起飞重量受限于返场落地的爬升性能,那么可以改善爬升性能呀。波音的确也是这样做的,波音提供了选择。

通常,落地爬升性能分为进近爬升和复飞爬升,襟翼为30或40/15。为了提高性能,波音提供了30/5甚至15/1的襟翼选择。但是航空公司却需要为机组付出更多的培训成本。(我觉得波音把这个锅甩给了公司)

==========也许是个解决办法=======

在考虑这个大坑时,我们一直在纠结一个问题,这个限重究竟是制造商的审定限制还是公司的运行限制。如果是制造商取证时的限制(毕竟是25部),那么就不应该甩给公司运行时限制;如果是运行限制,那么,公司可以有更多的选择权,比如选择起飞备降场。可以对于某些落地爬升性能很差的起飞机场,每次都选择一个性能更好的起飞备降场。

空中两套自动驾驶仪都不工作,这种倒霉的事真能碰到。

昨日有一个上海飞松山的航班,在起飞后几分钟报告两套自动驾驶仪都接不通。

一套不工作我听说过,两套都接不通,这就稀奇了。曾经在考试中问过别人的问题:“空中如果两套自动驾驶都不工作该怎么办”,成了真实的情况。我一边联系机务,一边想到RVSM,RNP,RNAV,二类都不能用了,还能不能飞松山?松山是不是有RNP APCH?飞往台湾的航路上能不能申请RVSM以下运行?我记得飞台湾有高度限制,具体是多少怎么突然想不起来了。如果飞过去还能不能飞回来。我承认在当时以上问题我一个答案都没有,而且有时间压力的情况下,的确慌乱了。

机务建议继续飞往松山,回程可MEL。我只能先把机务的意见转告机组。在那一瞬间,我想让飞机返航,但是我又拿不定主意,因为我只是扫了一眼飞行计划、QRH和MEL,还没有时间看航路上的限制,没有充分的理由。我本来想先让飞机飞一会,如果发现不行再返航,因为油量是足够的。但是我记得飞台湾的交界点肯定有高度限制,而且航班很快就会飞到交界点的,这个时间压力对我影响很大。幸好,随后飞机又出现了速度配平故障灯,机组考虑到复合故障,就决定返航了。

今天,有时间回忆一下昨天发生的事情,对自己的不足做个弥补。

先说QRH,我在事发当时看了QRH中自动驾驶仪的内容。两部都失效没有什么必要的操作,改为人工操纵就行了。今天看了速度配平的QRH也是没有什么内容。这两个系统都是辅助设备。

再看看MEL。
22-01B两部自动驾驶都可以失效,但是飞行时长可接受,而且不能执行延程运行、RNP AR、RNP-1、RNP-4、RVSM、RNAV-1、RNAV-2、CAT-II。
22-10速度配平系统2套可以失效1套。要求机务验证剩下的1套工作正常,速度配平不工作灯工作正常。因此,我认为就算自动驾驶都失效可以放行,空中出现速度配平灯亮,说明两套速度配平系统可能都有故障,或者是别的什么系统引起了两个速度配平系统故障。在松山能不能按这条MEL放行回来还真不好说。

再说回两套自动驾驶失效,上海和松山之间是否需要上述运行能力呢?航路如图所示,高度KASKA之前是9200米,之后是FL300。(情报说KASKA有特殊的交接协议,因此是双数高度层,而且有高度限制。我和管制朋友核实的确如此。)

因为计划的飞行高度层在RVSM内,我本来想说机组和管制申请降一个高度层,从92降到84,就可以不用进RVSM了,但是现在发现B591这一段的MEA是FL291因此无法降低高度,所以没有RVSM的话,这段就没法飞。另外,发现B591这一段是RNAV航路,但备注中写也可以接受NON-RNAV的飞行,不过再往南的L2航路也是一条RNAV的航路,没说可以接受NON-RNAV。所以没有RNAV能力,L2这段也没法飞。再看看松山的图。松山的进场没有RNAV,10号/28号有APCH但是也有传统。综上所述,这条航路至少需要RVSM和RNAV,因此两套自动驾驶都坏没法飞。

==============================================================

总结需要改进的地方:

1)在有时间压力的情况下,找出一个航班必须的所有运行能力是很难的。我现在坐在办公室的电脑上,花了1个小时来确认手册和航图。

2)EFB里的jeppesen航图软件可以加快这个过程,可以把航路输入进去,点击航路带号就能找到航路属性和信息。

3)空中出现故障养成看MEL的习惯。这个例子就很典型,QRH上什么都没有,MEL上一大堆限制(两套速度配平故障根本不能放行)。

4)返航落地注意检查落地超重,至少提醒机组主意超重。

5)做好资源管理,一个人查手册,一个人寻求机务、飞行支援,一个人回甚高频。

最后阶段爬升越障

还记得上次写过一篇《起飞一发失效直线离场的终点在哪里?》。文中说道起飞性能考虑的范围是:“起飞航迹从静止点起延伸至下列两点中较高者:飞机起飞过程中高于起飞表面450米(1,500英尺),或完成从起飞到航路形态的转变并达到VFTO的一点。”

一般来说,起飞4个阶段是这样的:

简化一下可以画成这样:

但是波音飞机起飞TOGA推力只有5分钟。对于有些近距离的障碍物,可以把第二阶段延长,叫延伸二阶段(extended 2nd segment):

但是对于远端障碍物,还有一个策略是用最后阶段爬升(final segment climb):

========================================================

延伸二阶段用的比较多,最后阶段爬升用得比较少,AFM中对于最后阶段障碍物的描述:

根据性能提供的信息,这中远距离障碍物出现在绵阳:

这就是为什么性能在制作起飞性能表时,增加了提醒,要求机组在第三阶段加速后,继续爬升,否则机组可能错失爬升的机会。(我猜机组不一定会冲着山飞,可能会调头的,但从性能的工作的角度来说,直线离场没有问题,或者说直线离场的性能分析只是为了满足法规要求。)

============最后推荐一个性能的公众号,都是满满的干货================